前言:一篇好文章的誕生,需要你不斷地搜集資料、整理思路,本站小編為你收集了豐富的測量論文主題范文,僅供參考,歡迎閱讀并收藏。
在鍋爐自身檢驗工作開展過程中,我們經常會發現如果爐墻溫度過高時,會使得熱量大量的散失和消耗,從而降低了鍋爐的工作效率,同時對于整個鍋爐系統的安全運行也帶來了非常不利的影響。當前我國出臺的鍋爐節能標準中,對于鍋爐的爐墻溫度進行了一定的限制,對于檢測壁面的傳統設備等也發揮了很好的作用。因此采用新的熱成像檢測技術能夠使得更好的完成檢測過程,使得檢測更加直觀、具體,檢測結果也更加容易方便記錄。在利用熱成像技術開展檢測過程中,能夠迅速的檢測鍋爐壁面的運行溫度,通過對其相關的儀器設備顯示情況進行顯示,能夠準確的了解鍋爐內部的高溫點分布情況,同時對于超過正常溫度的范圍可以提前做好控制,提高能源的利用效率,減少能源不必要的消耗,同時也可以為檢測工作人員做好相應的準確工作,提前可以做好保溫措施,避免出現工作中的一些遺漏。在利用熱成像技術開展工作的過程中,利用壁面進行取像時,可以利用自然光進行取像操作,通過采用專門的軟件設備,可以對不同的熱成像圖像進行對比,尋找不同之處,對其進行原因分析,從而能夠有助于對鍋爐運行過程中,熱成像技術的運行精確度進行把控,對其影響因素不斷進行分析和探討,從而不斷提高鍋爐運行過程中的精確度,提高其檢驗效率,節約檢驗成本投資。熱成像技術在應用于鍋爐檢測過程中,能夠對存在溫度異常的鍋爐區域進行科學檢測,從而有助于檢測人員及時的發現保溫層受到損害的情況,及時開展解決工作,降低其測量過程中的誤差。采用這種新型的檢驗方式,能夠更好的幫助工作人員制定一個檢測計劃,比如定期開展檢測和養護工作,能夠有助于能源的合理利用,提高能源利用效率。采用熱成像技術對于鍋爐的水垢方面也能夠實現很好的識別管理,有效的做好水垢清除工作,節約成本,保證鍋爐的良好運行。
2輔助設備的檢驗應用
在鍋爐運行過程中,輔助設備的良好運行對于鍋爐的安全運行有著重要作用,因此在鍋爐檢驗工作開展過程中,還需要假期nag對輔助設備的檢查和控制。在最近幾年中,我國鍋爐運行的自動化程度不斷提升,因此采用輔助設備也會對鍋爐的安全運行帶來一定的影響,比如鍋爐持續發熱,就可能意味著鍋爐的輔助設備出現了一定的磨損情況,或者是整個輔助設備出現了故障等,因此需要及時的展開檢測工作,利用熱成像測量技術就可以快速的展開檢測工作,及時發現輔助設備中出現的電線脫落、連接過密等情況,從而能夠及時的采取措施來達到有效解決的效果,從而保證其輔助設備的良好運行。
3結語
1.1三維可視化技術
三維可視化技術,是對一種能夠形象立體的描述礦山模型的技術手段,利用三維可視化技術可以更加全面的了解礦體的地表形態與礦體空間信息之間的位置關系,為測量人員提供更精準形象的空間分析數據。三維可視化技術是通過三維動畫軟件來實現的,常用的動畫軟件是3DMAX,它具有先進的運動匹配以及數字化建模等功能,可以大幅度的提升三維可視化模型的制作品質。
1.2數字化資料處理技術
資料的數字化處理,是礦山測量系統的一項重要工作,礦山測量工作包括數據信息的采集、存儲以及處理,數據類型主要是圖形、數字以及表格等[2]。進行資料的數字化處理,需要用到計算機的輔助繪圖功能和電子圖表化功能,許多測量工作者會運用VB、AutoCAD等軟件進行實際的數據處理工作。
2數字化測量在地面控制測量中的應用
2.1GPS地面控制網的布設要點
地面控制測量的主要目的是為施工放樣、變形觀測、地面大比例成圖、建立整體的控制奠定基礎,建立地面控制網可以對全局有一個整體的把控,限制測量誤差的積累和系統之間的錯誤信息傳遞,因此,有利于提高測量數據的精準度[3]。GPS與地面控制測量結合,就形成了GPS地面控制網這種先進的地面控制測量方法,在布設地面GPS控制網時,要充分考慮測量范圍的大小、精度要求以及點位密度等因素,可以根據工程的需要設定不同的邊長。在分布網點時,要遵循統一的測量規則,按照嚴格的等級標準進行施工作業。
2.2常見的網形
GPS地面控制網對橫向誤差沒有影響作用,但其長度卻會對地下貫通的縱向產生誤差,因此,兩點通視網形和后視同一點網形這兩種簡便靈活的網形,在城市地鐵的地面控制網布設中具有更加明顯的優勢。針對丘陵隧道情況,采用后視同一點布設網形不能直觀的通視兩個控制點之間的聯系,但可以在丘陵山脊上設置一個新的控制點,實現與兩點之間的通視,只要水平角度夠精確,就可以顯著地減少地面控制網對橫向誤差的影響[4]。
3數字化測量在井筒深部延伸中的應用
立井井筒深部延伸是礦井測量的一項關鍵工作,利用激光測距儀、全站儀等進行井筒深部延伸的貫通測量能夠有效的降低橫向誤差,提高貫通測量的精確度,而且與傳統的測量方式相比,還能滿足井筒深部延伸的精準定位要求[5]。針對地理坐標北緯30°55′,東徑117°49′,平均海拔為168.5m的丘陵地帶開掘的直徑3m,筒深600m的輔助井,可以直接對其改造并延伸成井,一般是先在井筒內預留一段超過5m的巖柱作為井筒隔離層,在180~300m深部采用吊罐反掘的方法刷大成井。為了提高豎井貫通工程的測量精度,采用全站儀和陀螺儀能夠定向的反映輔助井的貫通施工,對丘陵地帶的輔助井貫通施工具有很強的指導意義和實用性。
3.1貫通測量誤差的預計
貫通測量誤差,需要從既定的k點開始,沿平巷和下山敷設導線,并測量回到k點所引起的誤差,從外部形式上看像一條閉合的導線k-1-2...15-16-k,在實際貫通之前是一條支導線,所以,在水平方向上的重要貫通誤差,實質上是支導線終點k在x方向上的誤差。
3.2輔助井貫通測量
在輔助井貫通測量的地面控制測量中,可在輔助井、措施井及混合井井口附加埋設3各相似的近井點,并建立以第1個近井點為坐標原點,其余兩個為假定方位的坐標系統,將3個近井點之間用1條直線連接,利用全站儀測量6個回數,利用激光測距儀測量往返距離,在閉合的三角形中就可以測定導線邊長,同臺儀器的往返測距和不同測量方法的測量結果可以多次使用。由測量誤差所引起的x、y方向上的誤差,采用全站儀導線,全站儀的測角精度為2s,測距精度為2mm+2ppm,由于平均誤差小于100m,所以各邊的誤差均小于2.2mm。利用陀螺儀可以簡化深部延伸井筒的定向程序,先在地面上獨立測量3個儀器常數,再在井下定向邊上獨立測量2次陀螺方位,基礎定位程序可以在3d之內完成。輔助井井中測量的目的,是為了確定井筒的垂直度,一般是先地表標記出一個以井筒為中心點的十字線,沿井筒十字線放置兩根鋼絲作為幾何投點,通過測量多處井點,利用余角法就可以推算出井中坐標的具置,并進而確定井筒的垂直度[6]。主井與輔助井貫通時的測量誤差來自于兩工作面上井筒中心的相對偏差,一般是先假定井筒中心線方向為y'方向,與它垂直的方向為x'方向,最后求出井筒中心的平面位置誤差。對于兩個相向開鑿的立井貫通,需要同時進行地面測量、井下測量和定向測量,這些測量誤差的所得出的貫通相遇點的誤差,需要同時預計x'、y'兩個方向上的誤差。
4結語
1安裝指向測量技術
1.1方位角測量
采用GPS測量方法獲取大地方位角[2]。在1#、2#和3#測量墩上分別架設GPS接收機,測量時段為2h,高度截止角為5°,采樣間隔為5s,如圖1所示。使用觀測站精密星歷解算得該1#墩的WGS84下笛卡爾坐標,平差得到各點在WGS-84坐標下的平面坐標。
1.2控制網布設
采用LeicaTDA5005全站儀對8個平面控制點進行邊角網測量[3,4],如圖2所示。1.3雙經緯儀測量系統建站與傳遞因攝影測量坐標系為局部坐標系,需利用雙經緯儀測量系統通過公共點將其轉換至大地坐標系下[5,6]。在天線角點及邊緣均勻選取8個位置,在背架上固定工裝,粘貼8個測量標志點,作為連接經緯儀系統與攝影測量系統坐標系的公共點,如圖3所示。利用雙經緯儀系統測得公共點在控制網坐標系下坐標[1,7],即可將天線面測量點攝影測量坐標轉換至控制網坐標系下。
2面型精度測量技術
采用VSTARS工業攝影測量系統、雙經緯儀系統測量天線面型精度。在每塊面板上粘貼9個測量標志點,如圖4所示,共計1350個。每行間隔1塊面板布設1個編碼標志,共計16×5=80個。攝影距離約為6m。利用雙經緯儀測量系統測量8個公共點在設計坐標系下的坐標;利用INCA3相機拍攝像片,單次測量拍攝約130張,導入V?STARS軟件處理得到測量點和公共點三維坐標[8];利用8個公共點將測量點坐標轉換至設計坐標系下;將測量點坐標與天線設計模型做比對得到天線面型精度。
3安裝指向測量精度
天線指向精度依據方位角測量精度、控制網布設精度及雙經緯儀測量系統建站與傳遞精度等多方面因素估算得出。
3.1方位角測量精度
采用GPS國家二等網的要求測量,單點解算精度±2mm以內,1-3測量墩距離為185.2m,1-2測量墩距離為166.8m,換算成角度1-2方向±2.5″(0.0007°),1-3方向±2.2″(0.0006°)。
3.2控制網
布設精度平面控制網測量,對8個平面控制點進行邊角網測量,具體測量方案如圖1所示。每設站觀測2個測回,具體限差指標如表1所示。平差后最大點位誤差為±0.442mm,最大點間誤差為±0.442mm,最大邊長比例誤差為:1/212100,控制網最短邊長為20.3m,按最大點位誤差及最短邊換算最大角度影響為±4.5″(0.001°)。
3.3雙經緯儀測量
系統建站精度采用對8個公共點前后2次測量的重復精度計算雙經緯儀系統的建站精度,該坐標差(RMS)為1??192mm,故單次測量精度為1.192/2=0.843mm。在9m范圍內引起的角度偏差值約為:0.843×29000×1803.14=0.011。
3.4雙經緯儀測量
系統與攝影測量系統傳遞精度對雙經緯儀測量系統與攝影測量系統測得的8個公共點坐標進行公共點轉換,轉換后誤差(RMS)為0.838mm。在9m范圍內引起的角度偏差值約為:0.843×29000×1803.14=0.011°。綜合上述角度誤差,天線指向精度約為:0.00072+0.0012+0.0112+0.0112≈0.016。
4面型測量技術
精度采用公共點轉換法將測量點坐標轉換至設計坐標系下,與天線設計模型作比對得到面板各點位偏差以指導調整[9]。經4次測量、3次調整后,天線面型精度(RMS)為0.304mm,達到設計要求。各次測量天線面型精度如表2所示,測量點偏差分布如圖5所示。
5結束語
隨著科學技術發展,各行各業的技術進步已是日新月異,測量技術也取得了長足的進步,如今,全站儀、測量機器人、電子水準儀、激光準直儀、激光掃平儀等在工程測量中已廣泛應用,不僅大幅降低了工程測量的工作強度,更為工程測量向自動化、數字化方面的發展提供了堅實的基礎。同時,新裝備的應用,也改變了工程測量的技術手段和作業流程,如改變了傳統的工程控制網布網、地形測量、施工測量、變形監測等的作業方法,GPS測量控制網、測距導線網成為控制網布設的首選,GPS高程測定、光電測距三角高程導線已可以代替三、四等水準測量,具有連續定位功能的全站儀或RTK用于施工放樣測量和碎部測量,免棱鏡測距儀減輕了工程測量的工作強度,具有自動跟蹤測量功能的測量機器人為碎部測量提供了理想的儀器;另外,測量數據處理的手段也發生了根本的改變,數據采集甚至實現了自動化,手工繪圖已成為歷史,數據計算已經全面電子化。
2、GPS定位技術在工程測量中發揮的作用
GPS技術的出現和廣泛應用,是測量技術的重大變革,它改變了許多工程測量的方法和手段,大大減輕了工程測量的難度、工作量和工作強度。GPS技術具有全天候、海陸空均可進行三維定位的能力,利用GPS定位技術,在工程測量時可以方便快捷地測定高精度的三維坐標,具有高速度、高精度、操作簡單、方便靈活的特點。當前,GPS定位技術已經應用到各行各業,在工程測量中,無論是各等級控制網的建立與改造,還是在單點定位、地形圖測繪、線路施工、變形監測、地球板塊監測、海島海礁測量等,都具有得天獨厚的優勢和便利性。隨著我國各地大范圍、高密度CORS基準網的全面建設完成,利用GPS差分定位技術和RTK實時差分定位,單點定位技術和精度不斷提高,GPS技術在工程測量中控制網布設、碎部點測繪、施工放樣、變形監測、高程測定等方面已經全面應用于實際工作中。同時,利用GPS定位技術連續、實時、自動測量的特點,加上自動化處理技術,工程測量中自動測量、實時處理、連續監測的應用將有很大的發展空間。
3、RS技術已是地形圖測繪的重要手段之一
RS(遙感)技術在測量中的應用有著悠久的歷史,并發揮著巨大的作用。RS技術的特點是不需要接觸觀測目標、直接通過遙感信息對其各項特征信息進行解譯處理,提取有用信息。利用RS技術獲取的信息(如遙感影像等),通過糾正定位,可以獲取準確的地理空間信息,因此廣泛應用到工程測量中。當前,隨著高質量、高精度、高效率、低成本的遙感測量儀器的不斷推出,結合計算機技術中的應用,RS技術已經能夠提供完全、實時、大范圍的三維空間地理信息,特別是廣泛應用于地形圖測繪中。RS技術的廣泛應用,降低了測量成本,減少了外業工作量,縮短了測量周期,具有測量高效、高精度,成果品種多、直觀性強等特點。在地形測繪、線路勘選、變形監測、文物保護等工作中起到了巨大的作用。如今,全數字攝影測量系統、集群式數字攝影工作站等新技術已經全面應用,為RS技術應用提供了更為高效的技術手段和方法,也使得RS技術在工程測量中發揮了極其重要的作用。
4、數字化技術成為工程測量中的主流
大比例尺地形圖測繪是工程測量的重要內容,以往常規的模擬成圖方法靠模擬采集、現場手工繪制、事后整理整飾,是一項腦力勞動和體力勞動結合的艱苦的野外工作,而且手工描繪成圖周期長,產品形式單一,專題成果制作困難,成果應用不能實現多樣化,難以適應現代化工程建設對地形圖多樣化的需要。隨著全站儀、RTK等數字化測量儀器的廣泛應用和數字化專業成圖系統的出現,工程測量從模擬時代進入到數字化時代,它把野外數據采集、計算機數據處理、數字制圖、成果分類分層存放等優勢有機結合起來,形成了內外業一體化的數字化成圖系統。況且數字化測繪技術產品成果多樣,能夠輕松制作不同用途的專題產品,能夠輕松應對各類工程測量中的多樣化需求,同時還能有效提高工作效率,成果存儲、管理應用、轉移等方便易行。如今,數字化測繪技術在工程測量領域已是廣泛應用,大比例尺測圖技術及其產品已經實現了數字化、信息化、多樣化。隨著專業數字化成圖系統的不斷發展,一些工程圖紙(如縱橫斷面圖、宗地圖等)實現了自動繪制,有效提高了工程測量的工作效率。數字化的專業成圖系統不僅可直接提供紙圖,還可以建立專業數據庫,為基礎地理信息的多樣化應用和服務自動化、網絡化、社會化打下良好的基礎。
5、GIS技術在工程測量成果應用服務中漸成主流
隨著數字化技術在工程測量中全面普及,測量數據采集與處理已實現數字化,工程測量進入了全數字化時代。然而,大量測量成果如何更好地服務于社會發展和工程建設,是必須解決的問題。面對海量的地理信息成果數據,怎樣管理和應用工程測量成果,目前最好、最有效的方法就是利用數據庫技術和GIS技術。具體地說,就是將測量成果進行標準化、規范化的處理,通過建立地理信息數據庫及其應用管理的信息系統,有效管理、存儲和處理測量成果;利用GIS的統計和分析更能,提供針對性強、滿足專題應用的圖件和統計結果,更好的應用測量成果;同時利用網絡技術,實現測量成果服務應用和定向分發的網絡化和自動化,更好地應用到科學管理和科學決策中。GIS管理應用系統建設是一項復雜、龐大的系統工程,不僅需要較大的資金投入,也需要網絡等基礎設施的支撐,更需要技術人才的培養,才能發揮其巨大的作用。如今,GIS技術已經得到政府部門的高度重視,在專業部門得到推廣應用,并已成為信息產業的重要組成部分,地理信息產業的發展,也迎來了良好的發展局面。
6、InSar技術逐漸被重視
合成孔徑雷達干涉測量(InSAR)是近期才發展起來的一項新的對地測量技術,它是以合成孔徑雷達復影像數據中提取的相位信息作為數據源,通過整合處理和運算,獲取地表三維信息和及其變化信息,精度高、范圍廣,且InSAR技術具有全天候、全天時和一定的透視性的優勢和特點,這種技術已經引起了世界各國的廣泛關注和深入研究。目前,這種技術的應用已經十分的廣泛,比如:在監測地震變形中的有著重要的應用,在大范圍檢測監測厘米級或更微小量級的地球表面形變中也起著越來越重要的作用,在形變災害監測領域和滑坡形變監測中也有著不可替代的優勢和作用,等。正因如此,InSar技術在工程測量中也逐漸得到重視,應用前景和發展前景十分廣泛。
7、結語
作者:馬知也 單位:蘭州職業技術學院
網絡流量采集方法
對經過該鏈路的流量進行監聽和捕獲,按一定格式將流量數據進行編碼,或者將其匯聚為流數據,發送給后臺的接受存儲設備.IPFIX工作組[3]定義了采集設備將流量發送給后臺接受設備的協議及數據格式.數據存儲模塊對采集并初步處理后的數據在存儲設備中進行存儲以備進行下一步數據分析.小型測量系統存儲數據到本地采集系統的硬盤上,并實時的進行分析處理和應用.而在大型測量系統中一般有專用的中心存儲設備來存儲數據,通過專用或普通鏈路接受各個測量結點捕獲的數據.數據分析部分對流量特征進行分析,并將這些數據用于計費、異常檢測等應用.網絡設備支持的流量采集有些路由器或交換機本身具有流量采集的功能,在進行路由轉發等功能的同時,它們可以通過專用的硬件設備采集網絡流量數據,并進行初步處理,然后將其轉發到后臺專用流量接收設備.目前網絡設備中應用廣泛的Cisco公司的Netflow和基于網絡設備流量采集標準的sFlow兩種流量采集技術.Netflow通過采集數據分組,根據配置對其進行抽樣,并對具有相同“流關鍵字”的分組聚合形成為流信息,然后通過定義的格式把流信息發送到后臺的流量接收服務器,再由后臺服務器對流信息進行存儲、分析等工作,從而實現完整的流量測量.而sFlow流量采集技術是將sFlowAgent嵌入在交換機和路由器等網絡設備中,它負責對流量進行監視,并將采集的信息發送給后臺的接收服務器.sFlowAgent通過對數據進行抽樣而減少向后臺服務器發送數據量.基于網絡設備支持的流量采集技術一般被用于計費和流量分析等領域.隨著網絡速度的提高,流量采集功能的使用會對路由器、交換機本身的轉發性能產生一定程度的影響,另一方面這種粗粒度的信息對于某些需要詳細分組信息的應用也存在著不足.基于網卡采集在正常應用中,網卡從網絡接口接收數據分組,然后將它傳遞到上層應用.基于網卡的流量采集方法有正常應用模式和混雜模式兩種.在正常應用模式下,網卡只接收發送給自己的數據分組.而在混雜模式下,網卡可以接收所有到達的數據分組,硬件不對分組進行過濾,所有分組都會進入系統的內核.因此,當一個網卡專門用于流量數據采集時,一般應設置為混雜模式.專用設備進行采集雖然通過一系列技術改進措施,普通網卡結合計算機的網絡流量采集技術可以對普通鏈路進行流量數據采集.但對于高帶寬的鏈路,應該采用專用的硬件設備進行流量數據采集.一些公司推出了專用的流量采集設備,如Endace公司的DAG卡[4],NetScout公司的nGeniusProbes、nGeniusInfiniS-tream產品[5],以及一些基于網絡處理器的流量采集方案等.這些專用設備使用高性能專用硬件實現數據采集工作,性能上較前兩種采集方法有了很大的提高.并行采集隨著網絡速度的高速發展,單個設備的采集能力已經很難適應流量數據的采集.因此,利用多個采集設備并行完成流量采集任務成為一個較好的選擇.但為了保證各個采集設備的負載均衡,必須對分流設備的分流策略進行仔細設計.如果分組被分到多個流量采集設備,那么將會給后續的匯總處理程序帶來一定的困難.為了使多個采集系統在數據采集上一致,并保證數據集的完整性,多個采集系統之間必須解決時間同步等問題.
網絡流量測量模型
在現實中許多比較難以解決的問題,一般解決方法是先建立問題模型,模擬一定的場景和條件,然后在這些場景和條件下對問題進行模擬解決.由于互聯網絡的異構型和網絡高突發性業務量使得網絡呈現復雜的非線性,為了有效的對網絡流量進行測量,就需要建立一定的網絡流量測量模型,而且這種模型的建立也是非常有必要的.首先建立仿真模型對真實網絡流量進行描述,這種模型還能夠對網絡流量將來的行為趨勢有效地進行預測.傳統的網絡流量模型多以泊松過程為基礎,其中有泊松模型、馬爾科夫模型、自回歸模型、自回歸移動平均模型和自回歸合成移動平均模型等,這些模型同屬于短期相關性模型,即若測量時間的間隔足夠大的時候,當前時刻所采集到的業務流量與過去時間所采集到的業務流量不具有相關性.從時間的角度來看,這些模型所采集的數據流量具有短相關性,隨著測量時間間隔的變大,網絡流量會趨于一個恒定的常量,也就是說,網絡流量突發性得到了一定的緩和,因此,傳統網絡流量測量模型并不能描述網絡性能的長相關性.對網絡流量自相似性進行深入研究后發現,自相似網絡中業務流量在較大的時間間隔具有突發性,并且這種業務流量的長相關性比較明顯.因此,傳統流量模型一般不適合用來進行自相似流量的模型建立.所以,目前對網絡流量的描述逐漸采用自相似模型,這種模型能夠表征長相關性與突發性.自相似性網絡流量模型以自相似過程為基礎而建立,模型在精度和靈活性方面與統計特性下建立的模型比較并沒有什么優勢,甚至沒有統計特性下建立的模型好,但其具有明確的物理意義,有助于理解網絡流量產生自相似的原理.在自相似性網絡流量模型中流疊加算法使用較多.ON/OFF流疊加模型定義疊加大量的ON/OFF源,每個源都有兩個周期交替的ON和OFF狀態.在ON狀態時,數據源通過連續的速率發送數據包;在OFF狀態時,數據源不發送任何數據包.在這一過程中,所有發送源都出于ON或OFF狀態的時長獨立地附和重尾分布.對于網絡流量統計模型是以其統計特性下表現出的性質為基礎而建立模型,這一類模型相比其它模型雖然在靈活性和精確方面占有一定優勢,但其并沒有具體明確的物理意義.分形布朗運動、分形ARIMA過程、多重分形小波模型和小波域獨立高斯模型都屬于這一類模型.雖然自相似性測量模型以網絡特征為基礎而建立的模型,它可以對業務流量的自相似特性和流量突發性與長相關性進行描述,可以全面認識網絡業務流各個方面的內在規律,在一定條件下能夠取得較好的預測效果.但實際的網絡業務流中,既有短相關特性,又有長相關特性,這種短相關特性與長相關特性并存的多種特性給網絡業務流量精確預測帶來很大的挑戰.因此,自相似網絡流量模型對網絡流量的所有特性也不能完全描述.
隨著全站儀的廣泛使用,使用跟蹤桿配合全站儀測量高程的方法越來越普及,使用傳統的三角高程測量方法已經顯示出了他的局限性。經過長期摸索,總結出一種新的方法進行三角高程測量。這種方法既結合了水準測量的任一置站的特點,又減少了三角高程的誤差來源,同時每次測量時還不必量取儀器高、棱鏡高。使三角高程測量精度進一步提高,施測速度更快。
一、三角高程測量的傳統方法
如圖一所示,設A,B為地面上高度不同的兩點。已知A點高程HA,只要知道A點對B點的高差HAB即可由HB=HA+HAB得到B點的高程HB。
圖一
圖中:D為A、B兩點間的水平距離
а為在A點觀測B點時的垂直角
i為測站點的儀器高,t為棱鏡高
HA為A點高程,HB為B點高程。
V為全站儀望遠鏡和棱鏡之間的高差(V=Dtanа)
首先我們假設A,B兩點相距不太遠,可以將水準面看成水準面,也不考慮大氣折光的影響。為了確定高差hAB,可在A點架設全站儀,在B點豎立跟蹤桿,觀測垂直角а,并直接量取儀器高i和棱鏡高t,若A,B兩點間的水平距離為D,則hAB=V+i-t
故HB=HA+Dtanа+i-t(1)
這就是三角高程測量的基本公式,但它是以水平面為基準面和視線成直線為前提的。因此,只有當A,B兩點間的距離很短時,才比較準確。當A,B兩點距離較遠時,就必須考慮地球彎曲和大氣折光的影響了。這里不敘述如何進行球差和氣差的改正,只就三角高程測量新法的一般原理進行闡述。我們從傳統的三角高程測量方法中我們可以看出,它具備以下兩個特點:
1、全站儀必須架設在已知高程點上
2、要測出待測點的高程,必須量取儀器高和棱鏡高。
二、三角高程測量的新方法
如果我們能將全站儀象水準儀一樣任意置點,而不是將它置在已知高程點上,同時又在不量取儀器高和棱鏡高的情況下,利用三角高程測量原理測出待測點的高程,那么施測的速度將更快。如圖一,假設B點的高程已知,A點的高程為未知,這里要通過全站儀測定其它待測點的高程。首先由(1)式可知:
HA=HB-(Dtanа+i-t)(2)
上式除了Dtanа即V的值可以用儀器直接測出外,i,t都是未知的。但有一點可以確定即儀器一旦置好,i值也將隨之不變,同時選取跟蹤桿作為反射棱鏡,假定t值也固定不變。從(2)可知:
HA+i-t=HB-Dtanа=W(3)
由(3)可知,基于上面的假設,HA+i-t在任一測站上也是固定不變的.而且可以計算出它的值W。
這一新方法的操作過程如下:
1、儀器任一置點,但所選點位要求能和已知高程點通視。
2、用儀器照準已知高程點,測出V的值,并算出W的值。(此時與儀器高程測定有關的常數如測站點高程,儀器高,棱鏡高均為任一值。施測前不必設定。)
3、將儀器測站點高程重新設定為W,儀器高和棱鏡高設為0即可。
4、照準待測點測出其高程。
下面從理論上分析一下這種方法是否正確。
結合(1),(3)
HB′=W+D′tanа′(4)
HB′為待測點的高程
W為測站中設定的測站點高程
D′為測站點到待測點的水平距離
а′為測站點到待測點的觀測垂直角
從(4)可知,不同待測點的高程隨著測站點到其的水平距離或觀測垂直角的變化而改變。
將(3)代入(4)可知:
HB′=HA+i-t+D′tanа′(5)
按三角高程測量原理可知
HB′=W+D′tanа′+i′-t′(6)
將(3)代入(6)可知:
HB′=HA+i-t+D′tanа′+i′-t′(7)
這里i′,t′為0,所以:
HB′=HA+i-t+D′tanа′(8)
關鍵詞:精度分析、測回數2C互差平差歸零差施工控制網強制歸心對向觀測
前言:邊角后方交會在大頂子山航電樞紐工程的施工測量中得到了廣泛的應用,該工程為一等工程,工程規模為大一型、設計洪水位標冷為100年一遇,抗震烈度為6度。該工程是一座以航運、發電和改善哈爾濱市水環境為主,同時具有交通、水產養殖和旅游等綜合功能的低水頭航電樞紐工程。
問題的提出:在大頂子山航電樞紐工程的施工控制網加密過程中,受到地理條件的限制,首級控制網點之間相互不通視或通視條件不好,為此筆者采用了后方交會的辦法解決了施測過程中遇到的困難,在實際生產過程中取得了很好的效果。
一、觀測方法與基本原理
結合現場實際情況,在首級控制網的基礎上,布設了加密控制網。根據松花江大頂子山航電樞紐廠房、泄洪閘、船閘土建工程所處的施工部位,本著便于整體控制,易于保存的原則,以首級控制網為基礎,在施工區周圍布設了JK01、JK02、JK03、JK04四個加密點。這些加密點,分布均勻,通視條件好,地基穩定且不易被破壞,對整個施工區域可以進行全方位的觀測。加密控制網布設原則以首級控制點為基礎,并按二等的施測方安案做了一條閉合導線。
由于首級控制點江南SN01、SN02、SN03、02-1之間互不通視,江北SN04、SN05互不通視。受地形、通視條件的限制,采取邊角后方交會的方法,加密了JK01點、JK02點,再由SN02-Jk01起算,復核JK02,在布網過程中,為了保證精度,在不同的測站使用不同儀器和由不同人員觀測,采取了增加多余觀測、增加測回數、強制歸心等措施,后視SN01、SN02、02-1,使用徠卡TCR1800全站儀,觀測9個測回,經過計算JK01點的誤差為2.3mm,達到二等的精度要求。JK01與JK02、JK03、JK04、SN02構成一條閉合導線。
精度指標嚴格執法《水利水電工程施工測量規范》(DL/T5173-2003)中二等控制網的技術要求。Mb<1.0”、Mp<(5~7)mm(注:Mb:測量角中誤差;Mp:平面控制網點的點位中誤差)。
使用儀器及觀測方法。使用儀器為瑞士徠佧TCR1800系列全站儀,新建控制點采用具有強制歸心裝置的混凝土觀測墩,水平角觀測采用測回法,施測9個測回,同測回盤左、盤右所得角值較差小于4”,半測回歸零差小于6”,同方向各測回互差小6”;2C值互差小于9”,距離觀測采用電磁波測距(往返測),并進行了溫度和氣壓修正。
二、精度計算與分析
1、平面部分精度計算,邊角后方交會法測量測站點的精度估算公式為:
{[1+(sin2β)/(K2-sin2β)]m2s+[1+(cos2β)/(K2-sin2β)]2(s2m2β/ρ2)}
=±2.3mm<±(5~7)mm
其中:MpJK01為測站點JK01的點位中誤差,單位為mm
β=27”06”11.4722”
K=363.9389273/363.9341726=1.000013065
ms=0.0012855m
S=652.166462
Mβ=0.0392
ρ=206265”
由于規范標準主要以點位中誤差來稀量平面控制網的精度,因此,通過上式的計算結果與規范規定的相應控制網等級相比照,得出計算結果的中誤差達到二等平面控制網的精度要求。
2、控制網中導線點最弱點的點位中誤差;
MpJK03=±√{m2s+[smp/ρ]2}
=±2.4mm<
其中:MpJK03為測站點JK01的點位中誤差,單位為mm
ms為測距中誤差ms=0.002m
S測距邊邊長(平距)S=652.166462
Mβ=2”
ρ=206265”
MpJK01與MpJK03的值均在二等平面控制網點的點位中誤差限差要求;±(5~7)mm的范圍內,所以平面控制網精度達到二等的精度。
3、高程部分精度分析:
對向觀測高差較差:(表一)
方向
直覘高差(m)
反覘高差(m)
差值(mm)
三等限差
±35√s(mm)
SN02至JK01
-47.6403
47.632728
7.57
±28.3
JK01至JK04
-11.565461
11.558404
7.06
±23.48
JK04至JK03
-1.083775
1.080118
3.66
±12.78
JK03至JK02
12.017591
-12.01619
1.40
±20.87
JK02至SN02
48.254082
-48.271076
-16.99
±29.15
環線閉合差Mh=h1+h2+h3+h4=-0.923
環線閉合差限差:Mh容==±18.13mm
則Mh上述所有對向觀測高差較差均在三等高程控制網(光電測距三角高程導線測量)對向觀測高差較差的限差要求:±35√Smm的范圍內,環線閉合差值也在三等高程控制網(光電測距三角高程導線測量)環線閉合差的限差要求:±12√Lmm范圍內,所以高程控制精度達到三等精度。
三、結束語
通過筆者的實踐與分析,文中的邊角后方交會在袖珍計算機的廣泛普及和應用的今天,不僅能夠解決實際工作中控制點相互不通視的困難,而且實踐證明這種方法效果很好,在今天的具體工作當中會有廣泛地應用。
在這種環境下,許多公司的信息技術部門和營銷部門面臨同樣的機遇與挑戰。高層管理已經將信息技術和公司品牌視為公司的關鍵資產,二者現已成為最高層戰略討論的核心。但是盡管公司認識到這些核心要素的重要性,他們還是要為如何衡量二者的戰略價值和各自的表現而絞盡腦汁。
隨著技術管理人員介入高層關于公司品牌的戰略討論,他們開始進入一個嶄新的領域。其角色已擴展到設計和運用工具、監控公司品牌戰略的效率、以及評估品牌的表現,但是他們當中有許多人仍不清楚品牌的全部含義。
一個普遍的的誤解是把品牌當成一個徽記、一個標簽或一幅廣告,其實這些只是對品牌的有形表述,屬于營銷部門最基礎的工作。領先的全球企業認識到,品牌的內涵遠不只這些。品牌是一整套期望和聯想,源于對公司、產品和服務的體驗,每一個喝可樂或開卡迪拉克車的人都知道這一點。
測量方法的選取
好的品牌測量方法在于能用來做實際業務決策,并可以根據所得到的信息采取行動。下面五項基本原則有助于幫助公司明確是否為它的經營戰略和在市場中的定位選擇了正確的測量方法。為了便于記憶,可以把這五項原則縮寫為"SMART":
簡單實用(Simpletouse)有用的測量方法是同搜集、分析和利用信息一樣直接,關鍵要將測量品牌所花的時間減到最小,把使用信息的時間用足。
有意義(Meaningful)如果沒有直接與公司的目標或公司與顧客各個接觸點聯系起來,那么,這個方法也許對提升品牌和公司的表現幫助不大。
能付諸實施(Actionable)一個測量方法的關鍵是要優化經理所做的決策,如果起不到這個作用,就要用其它有效的方法。
能重復使用(Repeatable)就數據收集而言,測量方法應該是可以重復使用的。如果你偏離上次的XYZ方法時,你也許不得不從頭開始。要有可比性,即用蘋果比蘋果才可以有效地測量品牌。測量方法每年至少要評估一次或兩次,將你的精力集中在"尖子中的尖子"上,而不是將投資分散在只能得到最小回報的地方。
要有接觸點(Touchpoints)將測量的方法用在一些特定的群體上,雖然沒有一個方法能夠適合所有群體,但總有一兩個方法對每個群體都重要。確定你最感興趣的接觸點,然后采用相應的測量方法。
品牌測量的類別
品牌測量通常蘊藏在兩個大類之內:"戰略性測量"(Strategicmetrics)和"接觸點測量"(Touch-pointmetric)。"戰略性測量"幫助團隊評估各種品牌創建活動對品牌的總體財務表現的影響。"接觸點測量"評估品牌的表現和品牌創建的主動性。當顧客訪問網站或考慮購買產品和服務的時候,顧客與品牌就緊密地聯系在一起。
"接觸點測量"偏重于品牌表現的無形方面,每種方法都有特定的目的,并被設計成了解品牌是如何影響購買決策的。通過詢問目標受眾的一些具體問題可以追蹤到有用的信息
品牌偏好衡量"(Brandpreferencemetrics)的真正價值體現在對市場反應的跟進。比如采訪一個公司采購新電腦選什么牌子時,他們會說喜歡IBM產品,但到實際購買時,公司可能會選別的牌子。
"品牌意識和認知測量"(Brandawarenessandrecognition)常被同時用來顯示整個營銷組合能否有效地展示品牌的內涵。品牌認知旨在讓潛在的顧客了解品牌能提供什么,以及顧客能否將品牌歸類到合適的行業、產品類別和競爭優勢中來。
高品牌意識和認知說明公司在傳統的溝通方式上的投資可以降低一些,把資源騰出來投入到其它接觸點上。"戰略性測量"展現了品牌建設和管理對業務整體表現的影響,有些方法同盈虧有明顯的關系,另一些方法則相對間接一點。這些測量可以用元和分來表示,或者用對盈虧有影響的指數來表示,"戰略性測量"包括品牌的價格溢價(Pricepremium)和贏得顧客。
品牌的價格溢價是增加品牌收入的最好方法之一。如果一個企業的產品或服務比同類低價產品或服務多賣了100美元,這個單筆銷售的價格所增加的100美元就是品牌價格溢價。
把公司與競爭對手做比較的時候,這個方法也管用。在這種情況下,主要測量品牌的價格優勢或與競爭對手相比不利的方面,所獲得的信息能幫助公司為強化自己的地位而制定清晰的戰略性目標。
少而有針對性的測量方法對測量成功非常重要,同時,在"戰略性測量"和"接觸點測量"之間要保持平衡,保證將顧客從購買前到購買后的全部體驗都包含了進來。"戰略性測量"應該根植在公司業務測量之中,這樣就能易于接受并與高層管理者聯系起來。
技術所起的作用
信息技術部門無論在制定和監控新測量方法時,還是在向那些實際應用的人員提供反饋時,都起著不可估量的作用。
另外,管理層選中的測量方法應該基于公司現有的能力,技術管理人員要決定技術的基礎架構能否讓合適的人獲得合適的信息,這些信息怎樣才能得到,為了提高決策程序,如何與現有的業務數據交叉使用,以及為了保證最終的數據順暢地傳遞,公司應該怎樣更好地鼓勵在業務中分享關鍵數據。
關鍵詞:GPS電壓互感器二次壓降鎖相倍頻
隨著電力系統體制改革的深化,廠網分家的模式已初步形成。發電廠上網電量及電網間電量交換的精確計量直接關系到結算雙方的經濟利益,因此減小電能計量裝置的綜合誤差是十分重要的。實際測試的結果表明,電能計量綜合誤差中電壓互感器(TV)二次加路電壓降引起的計量誤差最為突出,大約占電費收入的1%-2%甚至更多,電費數百萬元。為減小該誤差,目前普遍通過鋪設測試電纜進行壓降的檢測,再通過電壓器進行跟蹤補償。這種方法測量功能有限,而且需要鋪設很長的電纜,在距離遠、地形復雜的地方甚至無法進行,這類裝置使用麻煩且不能實現在線監測。因而開發種測量精度高、無需鋪設專用電纜、具有遠程通信功能的新型電壓互感器二次回路壓降自動跟蹤補償及監測裝置很有必要。
基于全球衛星定位系統(GPS)的電壓互感器二次線路壓降自動跟蹤補償裝置能很好地解決以上問題。裝置以GPS信號作為TV二次線路兩端數據采集的同步信號,同步測量TV輸出端口和電能表輸入端口的電壓向量,結合鎖相倍頻技術,使系統的準確性和穩定性得到保證;并以電力線載波通信的方式進行數據通信,免去了鋪設電纜的麻煩和安全隱患;通過D/A轉換實時進行電壓補償,從而達到自動跟蹤補償的目的。
1自動跟蹤補償裝置的總體結構
系統結構如圖1所示。
基于GPS的電壓互感器二次線路壓降載波式自動跟蹤補償裝置由測量主機和測量從機兩部分構成。主機除了測量二次儀表輸入口的電壓參數以外,還向從機發送控制命令并接收測量數據,計算二次線路壓降,通過D/A轉換輸出補償電壓,通過串口與上位機通訊實現遠程監控和數據共享。從機結構與主機類似,只是沒有D/A補償模塊,它能與主機通訊,按主機命令對TV輸出端口的電壓參數進行測量,并將實時數據及時地發送到測量主機。
裝置的設計主要包括以下內容:(1)基于GPS的高精度時間同步測量單元的設計:GPS系統1PPS(秒脈沖信號)及100PPS和串口時間代碼的提取、同步測量電壓向量及計算處理二次壓降。(2)電力線載波通信模塊的設計:電力線波通信線路要求具備雙工通信的能力、比較穩定的相移特性,以及足夠的輸出功率。經過反復試驗比較,在TV二次線路上采用專用的電力載波數據通信芯片LM1893設計電力載波數據通信模塊,通信距離達500m,能夠滿足現場檢測的需要。(3)D/A補償模塊的設計:在單片機計算處理后的二次壓降補償值通過D/A轉換器轉換成模擬量,通過功率放大器后串聯迭加到二次儀表輸入端口,對二次線路上的電壓損失進行補償。
2基于GPS的電壓向量測量
壓降測量是通過分別檢測TV二次線路兩端的電壓向量(應檢測出幅值和相位),然后將兩端測量值相減從而得出線路壓降值的幅值差和相位差。電壓的幅值測量較易滿足要求,采用一般的16bitA/D變換的方法鄧可。而相位差的檢測則是技術難點,本裝置對相位的測量是通過鎖相環電路將電網頻率信號倍頻,用該倍頻信號作為計數器的時鐘信號。每次電壓過零時,計數器重新開始計數。通過讀取TV二次線路兩端計數值并計算差值從而得出相位差。其結構圖如圖2所示。計數器時鐘信號由鎖相倍頻電路產生,電壓過零檢測產生的信號經過整形后作為計數器的開始計數信號,GPS的100PPS脈沖在單片機控制信號的作用下對計數器當前值進行鎖存,每個周期的相位采樣數據(從鎖存器讀)、GPS接收機1PPS脈沖在單片機控制信號的作用下對計數器當前值進行鎖存,每個周期的相位采樣數據(從鎖存器讀)、GPS接收機1PPS信號以及它的時鐘標簽同時被送至單片機進行處理。
由于電壓互感呂二次線路壓降補償裝置的設計方案要求相差測量精度為±1'''',因此將電網頻率360×60倍頻,計數器記錄倍頻后的脈沖信號就可滿足相位差測量精度的要求。由此可得計算相位差的公式為:
其中,C1、C2為兩端計數器的讀數,f0為電網頻率。由上式可知,兩端計數差值就是兩端的相位差。
顯然,這種方法所得的結構與電網頻率無關,也不必靠高穩定度的高頻恒溫晶振獲取納秒級時標。得到的相位值不會受到電網頻率波動的影響,得出的數據準確度高,而且采用的器件對環境適應能力強,有較高的性價比,非常適合在各種工業環境下推廣使用。
3GPS測量電壓向量的工作程序
GPS接收機至少提供兩種形式的時間信號,即1PPS(每秒輸出1個脈沖)信號和串口時間代碼。1PPS的脈沖時間與世界協調時間(UniversalCoordinatedTime,縮寫為UCT)的秒的同步誤差不超過1μs;串口信息在1PPS脈沖之間給出,其中包括的時間信息用來說明前一個1PPS脈沖對應的UCT時間(年、月、日、時、分、秒)。許多接收機產品還能提供100PPS(每秒輸出100個脈沖)信號,其時鐘精度可達納秒級。在本裝置中采用這三種信號同步測量電壓向量。
本裝置可以對每一周期的相差進行采集。為了方便計算,方案采用主從機預約時間每次采樣1秒或幾秒的方式測量電壓向量(本文以采樣1秒為例進行說明)。參見圖2,主從機預約時間GPS的1PPS信號為準,單片機控制與門的開關,從而對計數器采樣1秒鐘(同時也對電壓幅值采樣1秒鐘)。在單片機輸出高電平的1秒鐘內,100PPS信號作為于鎖存器,同時單片機內部對每一個100PPS脈沖信號進行中斷處理,讀取計數器的鎖存器鎖存的值及電壓幅值,送入內存中依次排列起來。等待1秒鐘后,從機將采樣的數據發送到主機,主機再依次對數據進行計算處理,得出這1秒鐘內的二次壓降值及其補償值,分別送到上位機和補償模塊。
圖3為采樣子程序流程圖。當單片機主程序調用它時,子程序首先讀取主從機預約的采樣起始時間,在約定起始時間到來時打開與門(單片機輸出高電平),同時打開100PPS的中斷響應,開始等待下一秒鐘GPS的1PPS脈沖信號。其間,系統每個周期采樣一次電壓幅值和計數器值。在下一秒鐘的1PPS脈沖到來時,禁止響應100PPS中斷,關閉與門(單片機輸出低電平),返回主程序。在不需要采樣的時段里,單片機一直輸出低電平。其中,Ti是主從機預約的第i個電壓向量采集時間。
圖4
圖4為GPS信號及電網信號的時序圖。由于電網頻率是變化的,電壓過零脈沖相對GPS的100PPS時鐘的位置也是隨機變化的,如圖5所示。在計算相位差δ時,當100PPS脈沖發生在δ之外,就是前面已經介紹過的(如圖4所示),此時|ΔC|<15°,δ=C1-C2。當100PPS脈沖發生在δ之間需要注意以下情況(相位差值正常情況下不會大于15°);
第一種情況,首端電壓相位超前,此時ΔC<-15°,δ=φ1+φ2=C1-C2+360°;
第二種情況,末端電壓相位超前,此時ΔC>15°,δ=-(φ1+φ2)=C1-C2+360°。
綜合上述三種情況,相位差為: