公務員期刊網 論文中心 正文

計算機專業課程體系推薦算法研究

前言:想要寫出一篇引人入勝的文章?我們特意為您整理了計算機專業課程體系推薦算法研究范文,希望能給你帶來靈感和參考,敬請閱讀。

計算機專業課程體系推薦算法研究

摘要:大數據背景下的計算機專業課程體系的建設以學生為主體,充分考慮到了學生的學習特征。本研究在原有專業課程體系的基礎上,以提高高校學生培養質量為目標,提出在大數據背景下采集海量利用協同過濾算法獲得處于熱門狀態的計算機專業書籍列表,進行時間、樣本的累積后,獲得符合時代背景和學生特點的專業課程體系。該方法創新學生培養模式,通過可動態調整專業課程體系,提高了學生培養質量,完善了高校人才培養機制。

關鍵詞:大數據;課程體系;協同過濾

1概述

隨著大數據時代的來臨,我國經濟、教育、科技等產業正發生深刻的發展變化,人們每時每刻都在獲取到大量數據,呈現爆炸式增長的態勢。網絡教學和大數據時代,大學生課程學習體系需要根據時代背景、個性特點進行變革。尤其是計算機專業的課程體系更需要根據時展進行變革。采用現有先進手段,如大數據分析、機器學習等技術,有針對性地對學生的興趣偏好進行分析,獲得學生感興趣專業書籍列表,完善專業課程體系,可以解決目前教學與實際應用存在脫節問題,使課堂教學更有時效性,改善教學質量。高等教育行業,大數據及智能技術的出現和飛速發展更是引起了教學理念、教學方式、學生培養模式的變革。一直以來高等學校的學生培養模式都是在專業建設之初便確定下來,很少進行修改。即使進行修改,也很難針對學生特點進行個性化調整。高等學校教學過程中,一直存在著很多問題,如專業課程體系一成不變,不能體現技術潮流、學生個性特點的變化,課程的教學效果大部到理想要求。傳統的專業建立后一成不變的課程體系的培養模式已經不能滿足教學需求,無法充分調動學生的學習興趣及特點。學生在校內學習過程中,在慕課、圖書借閱、校內網站瀏覽等學習、生活過程中留有大量學習偏好數據。通過分析學生自身偏好數據,使用智能推薦算法,獲得具備個性化特點的課程體系,動態調整培養計劃,完善高校人才培養機制成為亟待解決的問題。

2協同過濾推薦算法

推薦算法通過進行數據分析,在海量的商品中推薦出用戶感興趣的商品,防止海量信息會對用戶造成壓力。推薦算法能夠通過分析研究用戶的歷史行為信息,將行為信息加入到用戶模型和推薦對象模型中,經過推薦算法的分析計算,生成初步推薦結果,通過多次的反復迭代計算,可以為用戶提供潛在需求的產品。協同過濾推薦算法采用相似性的原理,當用戶對某一對象A感興趣時,算法通過計算其他對象與對象A的相似性,根據相似性數據的大小得到排序列表,為用戶進行推薦。該算法還能比較用戶之間的相似程度,這樣可以將某一對象推薦給某一類客戶。參考圖1中所示的內容,應用基于項目的協同過濾方法進行分析如下:用戶1感興趣的物品有:物品1、物品3和物品4感興趣;用戶2感興趣的物品有:物品1和物品2;用戶3感興趣的物品有:物品1和物品3。由此可知物品1和物品3具有相似性,如果用戶表現出對物品1的興趣一般還會對物品3感興趣。用戶2由于對物品1感興趣,系統會將物品3推薦給用戶2。這個流程體現了基于項目的協同過濾思想。

3大數據背景下專業課程設置

3.1數據的采集與挖掘

在學校采集個性偏好數據時,用戶數據、書目數據和借閱數據是比較常用的數據源。采集學生校內外學習、生活過程中產生的海量的網絡元數據,通過對使用智能推薦算法,形成學生學習興趣、課程的智能推薦,學校根據智能推薦的結果和學生意愿,完成對學生學習課程體系的再設計,安排進行相應專業的學習,強化學生實踐環節的差異化、人性化,實現學生培養模式的創新。

3.2專業書籍推薦

采用基于物品的協同過濾ItemCF算法(Item-basedcollaborativefiltering)對學生感興趣的專業書籍進行推薦,算法的思想是計算各專業書籍間的相似程度,常用相似度矩陣進行表示。在為學生進行推薦時考慮興趣數據獲取時間影響因素,使推薦更具有時效性。ItemCF算法的主要基于物品的相似性原理,給用戶推薦與其感興趣的物品具備較高相似的物品,主要包括以下幾個步驟:(1)計算物品之間的相似度。每個用戶的興趣都局限在某幾個方面,如果兩個物品屬于一個用戶的興趣列表,那么兩個物品可能就屬于有限的幾個領域,而如果兩個物品同屬于很多用戶的興趣列表,那么他們就可能屬于同一個領域,因而有很大的相似度。(2)計算用戶U對一個物品的興趣。其中,P(u,j)表示興趣值,及物品j能夠對用戶u產生的興趣,r(u,i)表示物品i在用戶u那里獲得的評分,S(j,k)表示k個和物品j最相似的物品,N(u)表示用戶瀏覽過的全部集合。

3.3專業課程體系構建

在采用基于物品的協同過濾算法獲得學生專業數據推薦列表的基礎上,將全部學生的專業書籍推薦列表作為樣本進行統計,對推薦列表中的書籍進行排序。專業課程體系構建情況如如圖2所示。圖中課程名稱前的序號是實驗過程中課程推薦排序結果。

4結論

創新學生培養模式作為培養具備創新能力學生的關鍵因素,如何為學生提供更加個性化,具備更符合時展潮流的課程體系是創新培養模式的有益探索。利用先進的智能推薦算法,基于學生日常學習軌跡,獲得更加合理的課程體系是解決上述為題的有效手段。隨著個性化推薦系統及其相關技術的完善和廣泛使用,其在教育領域中的研究將會越來越全面和深入。

參考文獻

[1]高建煌.個性化推薦系統技術與應用[D].合肥:中國科學技術大學,2010.

[2]于凱,吳蕾.大數據環境下的推薦系統在個性化教學中的應用研究[J].福建電腦,2015(8):46-47.

[3]姜雷,趙功群.數字圖書館系統中的個性化服務模型[J].圖書館學刊,2011(9):66-68.

[4]錢冬明,等.數字教育資源共建共享的系統分祈框架研究[J].電化教育研究,2013(7):55-60,72.

[5]牛亞男.教學資源個性化推薦系統的設計和實現[D].大連:大連理工大學,2013.

[6]朱郁筱,呂琳媛.推薦系統評價指標綜述[J].電子科技大學學報,2012,41(2):163-175.

作者:張沛露 單位:吉林建筑大學

主站蜘蛛池模板: 国产欧美精品一区二区三区四区| 欧洲成人在线视频| 女大学生的沙龙室| 天天想你电视剧| 伊人这里只有精品| narutomanga玖辛奈本子| 精品久久久一二三区| 日本高清视频免费观看| 国产精品无码免费专区午夜 | 黄色福利小视频| 日韩精品有码在线三上悠亚| 国产小视频免费| 久久人妻无码中文字幕| 羞羞视频在线观看入口| 欧美一级黄色片在线观看| 国产欧美日韩在线观看无需安装| 久久精品国产精品国产精品污| 69pao精品视频在线观看| 欧美成人一区二区三区在线电影| 天天摸天天做天天爽天天弄| 亚洲视频网站在线观看| 一本大道无码人妻精品专区| 青草视频免费看| 最近中文字幕免费版在线3| 国产成人A亚洲精V品无码| 久久久久久亚洲精品中文字幕| 老八吃屎奥利给原视频带声音的| 巨r精灵催眠动漫无删减| 亚洲视频免费在线观看| 1024人成网站色| 日韩免费在线看| 可以看的毛片网站| 中文字幕视频在线播放| 粗壮挺进人妻水蜜桃成熟| 国产香蕉免费精品视频| 亚洲av无码专区在线| 色吊丝永久性观看网站| 无码免费一区二区三区免费播放| 又粗又长又硬太爽了视频快来| 99国产精品久久久久久久成人热 | 丰满少妇人妻无码|